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Concrete-filled steel tube (CFST) columns and even more so concrete-filled double-skin tube (CFDST)
columns have demonstrated a desirable behavior when subjected to fire loading conditions. Current
methods to estimate the axial load capacity for these columns exposed to fire are either limited to simple
cases using tables or require complex finite element analysis. In an effort to develop a more general and
practical approach to this problem, a simplified step by step analytical procedure is proposed for the
calculation of the axial load capacity of CFDST columns subjected to any given time–temperature (fire)
curve. The procedure was defined by combining an analytical solution to the heat transfer problem with
calculation of axial load capacity using the fire-modified material properties adopted from the Eurocode 4
general rules for structural fire design. The proposed method was verified with existing experimental and
advanced finite element simulation results. A number of design recommendations, based on the
knowledge gained from using the procedure for different case studies, are proposed for CFDST columns
subjected to fire.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Several past studies have demonstrated a promising behavior
for concrete filled steel tube (CFST) columns subjected to extreme
events including seismic [1–4], and fire [5–9] conditions. More
recently, an enhanced type of CFST columns, termed concrete filled
double-skin tube (CFDST) columns consisting of concrete between
an outer and inner steel tube, have also demonstrated a desirable
performance under separate seismic loading [10–12] and fire con-
ditions [13–15]. Furthermore, Imani et al. demonstrated that
CFDST columns can retain nearly all of their undamaged fire resis-
tance capacity after being subjected to significant seismic damage
[16]. This promising performance of CFSTs and CFDSTs in fire high-
lights the need for a simplified calculation method for estimating
their fire resistance (as opposed to relying on finite element anal-
ysis), particularly from a design perspective where simple but
rapid and sufficiently accurate strength calculations are crucial.

After reviewing existing methods for calculation of the fire
resistance of axially loaded CFDST columns, this paper presents a
new simplified two-step procedure. The first step provides an ana-
lytical based solution for the heat transfer problem, which
calculates the temperature distribution for the CFDST column
cross-section based on a given fire (time–temperature) curve.
The second step uses selected results from the first step to calcu-
late the design axial load capacity of the CFDST column at any par-
ticular time during the application of the time–temperature curve.
Note that the procedure is defined for CFDST columns, but can also
be used for the traditional CFST cases, with slight modifications.
2. Background

With respect to the performance of CFST columns under fire
conditions, several methods have already been developed (based
on both experimental and numerical studies) to calculate their fire
resistance time. Han et al. [7] proposed one such equation for
unprotected CFST columns based on regression analyses of exper-
imental results. Another method by Kodur and MacKinnon [17]
uses a single empirical equation to calculate the fire resistance of
axially loaded CFST columns.

Eurocode 4 provides three calculation methods for the design of
CFST columns under fire [4]: the first approach (i.e., tabulated val-
ues of axial load capacity for a few common cases of concrete filled
columns) is limited to a few cases (both in terms of the column
geometry and the applied fire curve), and is not applicable to a
CFDST column or for any column subjected to a general fire curve;
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the second method (referred to as simple calculation method in
Eurocode), provides a step by step procedure to calculate the fire
resistance time by incrementally increasing the uniformly dis-
tributed strain of the section to satisfy the axial equilibrium using
the material properties modified for elevated temperatures; how-
ever, it assumes that the designer knows the temperature distribu-
tion within the cross-section at any particular time during the fire
exposure, even though no simplified method is given in Eurocode
to calculate this temperature field; the third method requires an
advanced nonlinear thermal-stress finite element analysis.

Espinos et al. [18] proposed a method for calculating a uniform
equivalent temperature for the whole concrete core (and similarly
another one for the steel tube), which if used in the Eurocode
method, will provide the same fire resisting time as the one
obtained considering the actual non-uniform temperature distri-
bution. The uniform temperature value was conservatively deter-
mined to be the maximum of two values, which were calculated
such as to produce the same axial force resistance (assuming a fully
plastic section) and flexural stiffness for the cross-section as for the
case with true non-uniform temperature distribution. After con-
ducting fire resistance time analyses using this procedure for sev-
eral different CFST columns, two equations were proposed based
on regression analyses, for calculating of the equivalent uniform
temperature for the steel tube and concrete core, namely:

Ts;eq ¼ 342:1þ 10:77R� 0:044R2 þ 3:922Am=V � 0:025RAm=V ð1Þ
Tc;eq ¼ �186:44þ 5:764R� 0:026R2 þ 22:577Am=V

� 0:32 Am=Vð Þ2 þ 0:14RAm=V ð2Þ
In these equations, Ts;eq; Tc;eq are the equivalent uniform tem-

perature values for the steel and concrete sections, and the sec-
tion factor, Am=V , is the ratio of the surface area of the steel
tube to its volume. The expression for the section factor can be
simplified to 4=D, in which D is the outer diameter of the steel
tube. The parameter R, in both equations, refers to the standard
fire resistance class, which is given as 30, 60, 90, and 120 for
standard resistance times of 30, 60, 90 and 120 min. Although
Eqs. (1) and (2) were shown to provide acceptable results for
CFST columns with different cross-sections, they were limited to
the case of exposure to the standard ASTM E119 fire [19], and
(most importantly) there were no CFDST columns in the database
used in the regression analysis.

This study builds upon and enhances the second method
(referred to as simple calculation method in Eurocode), which is
more practical than finite element analyses and can be applied to
more general cases. The proposed simplified method presents an
approach for calculation of temperature field, in which the well-
known general mathematic solution for the heat transfer problem
is tailored to specific needs of the problem at hand (i.e. making the
solution directly applicable to any general form of fire curves), and
simplified for engineering calculation while keeping it accurate
enough for the purposes of this study. Moreover, the simplified
method proposed in this paper modifies the Eurocode trial and
error method for calculation of axial load capacity by introducing
a procedure that limits the number of steps to less than four in
the worst cases.
3. Analytical solution for the heat transfer problem

3.1. General solution for heat conduction differential equation

The objective of this section is to analytically solve the heat con-
duction partial differential equation for the cross-section of any
given CFDST column. The cross-section is initially at room
temperature, T0, and its outer edge is subjected to a predetermined
time–temperature curve, f ðtÞ. Fig. 1a shows the cross section of a
CFDST column. Considering the relatively higher heat conductivity
of steel compared to concrete (about 10 times larger), it is assumed
that both the outer and inner steel tube sections have a uniform
temperature distribution with the outer tube temperature equal
to f ðtÞ. Based on this assumption, the temperature distribution
problem can be reduced to a single material model for the cylindri-
cal concrete section subjected to f ðtÞ (Fig. 1b).

Considering a polar coordinate system, the boundaries of the
section are defined by ro (radius of the outer tube) and ri (radius
of the inner tube), with a specific point in the cross section refer-
enced by r; hð Þ. The differential equation of heat conduction for
the cylindrical section can be written as [20]:

a2 u;rr þ 1
r
u;r þ 1

r2
u;hh

� �
¼ u;t ri 6 r 6 ro; 0 6 h 6 2p; 0 6 t < 1

u r; h;0ð Þ ¼ T0; u ro; h; tð Þ ¼ f ðtÞ
ð3Þ

where u r; h; tð Þ is the temperature field in the section,

u;r ¼ @u
@r ;u;rr ¼ @2u

@r2 ;u;hh ¼ @2h
@h2

and u;t ¼ @u
@t . The initial condition is

defined by u r; h;0ð Þ ¼ T0 and the boundary condition for the
exposed outer edge is given by u ro; h; tð Þ ¼ f ðtÞ. The thermal diffu-
sivity of the material, a2, is given by:

a2 ¼ k
qcp

ð4Þ

in which k is the thermal conductivity, q is density, and cp is the
specific heat capacity of the material. Although these three param-
eters can vary with temperature, the differential equation is solved
assuming a constant a2 (using constant values recommended in
Eurocode). Potential effects of this assumption on the accuracy of
the solution is examined in the verification study presented in
Section 3.3.

Since the domain is cylindrical and the column is assumed to be
fully surrounded by the heat source (i.e., the temperature distribu-
tion is assumed to be uniform at all points on the cylindrical sur-
face, the initial conditions and boundary conditions are both
independent of h and therefore, the resulting temperature field,
u, is independent of h and a function only of r and t). Note that in
real fires, distribution of temperature can also change along the
height of the column because the fire exposure is not usually uni-
form in all locations. The equations here assume a uniform sur-
rounding fire, which causes a uniform temperature increase at all
locations on the outer surface of column. Therefore, results are
expected to be conservative.

If the equation is solved for values of r in the region,
ri ¼ 0 6 r 6 ro, it can be used for all the other cases that have the
configuration 0 < ri 6 r 6 ro. Therefore, the differential equation
is solved for a circular section, providing a general solution that
can be used for both CFST and CDFST columns. In case of a
CFDST section, the temperature at the radius, ri, is taken as the
temperature of the inner tube, and all temperature values for
radius values below ri are irrelevant. Applying these modifications
to Eq. (3), the governing differential equation is simplified to:

a2 u;rr þ 1
r
u;r

� �
¼ u;t 0 ¼ ri 6 r 6 ro; 0 6 t < 1

u r;0ð Þ ¼ T0; u ro; tð Þ ¼ f ðtÞ
ð5Þ

Note that the term uhh is eliminated. The partial differential
equation has a boundary condition which is non-homogeneous
only in time (u ro; tð Þ ¼ f ðTÞ) and can be solved according to proce-
dures given in various advanced engineering mathematics text-
books (e.g. [20]). Although the mathematical solution is well



Fig. 1. Cross-section of a CFDST column for the thermal/structural problem: (a) with steel tubes; (b) without steel tubes (assuming uniform temperature for steel sections);
(c) steel and concrete regions with uniform temperature distribution.
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known, it is briefly presented here to show the path to the main
resulting equation which will be used as the basis of simplified
equations in the latter parts of this paper. The solution (i.e.,
uðr; tÞ) can be written as the summation of:

uðr; tÞ ¼ u0ðr; tÞ þ vðr; tÞ ð6Þ
in which u0ðr; tÞ is a function satisfying only the non-homogeneous
boundary condition, u0 ro; tð Þ ¼ f ðtÞ. To fulfill this requirement, it is
assumed that u0ðr; tÞ ¼ f ðTÞ. As a result:

u;r ¼ v ;r ð7Þ
u;rr ¼ v ;rr ð8Þ
u;t ¼ v ;t þ f 0ðtÞ ð9Þ
u r;0ð Þ ¼ f 0ð Þ þ v r;0ð Þ ¼ T0 ð10Þ
u ro; tð Þ ¼ f ðTÞ þ v ro; tð Þ ¼ f ðtÞ ð11Þ

Assuming that f ðtÞ is the specified time–temperature curve
starting at room temperature, it is inferred that f 0ð Þ ¼ T0. Adding
this information to Eq. (10) gives:

v r;0ð Þ ¼ 0 ð12Þ
Also from Eq. (11):

v ro; tð Þ ¼ 0 ð13Þ
Using Eqs. (8)–(13) new problem can be defined for the function

vðr; tÞ as:

a2 v ;rr þ 1
r
v ;r

� �
¼ v ;t þ f 0ðtÞ 0 ¼ ri 6 r 6 ro; 0 6 t < 1

v r;0ð Þ ¼ 0; v ro; tð Þ ¼ 0
ð14Þ

Using the method of separation of variables, as presented in
Appendix A, the solution to Eq. (14) can be written as:

uðr; tÞ ¼ vðr; tÞ þ u0ðr; tÞ

uðr; tÞ ¼
X1
n¼1

Z t

0

2 �f 0ðsÞ� �
znJ1 znð Þ eð

zna
ro

Þ2sds
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I�

J0 zn
r
ro

� �
e�ðznaro

Þ2t

2
66664

3
77775þ f ðtÞ

ð15Þ
in which J0 and J1 are Bessel functions of the first type and zn’s are
the n first positive roots of the Bessel function J0ðzÞ. Eq. (15) can be
used to calculate the temperature of a point, located at the radial
distance r from the center of a circular region, which is subjected
to a time–temperature (fire) curve of f ðtÞ along its outer edge.
Although Eq. (15) provides the exact solution for the heat transfer
problem, its implementation requires the use of advanced mathe-
matical tools. A number of simplifications are presented in the
following section to make Eq. (15) more suitable for simple hand
calculations.
3.2. Simplification of the solution for heat transfer problem for
practical purposes

The first step in the simplification of Eq. (15) is to limit the
number of terms that need to be included in the summation that
is part of the equation, provided that the results remain sufficiently
accurate for the purposes of this study. Comparison of results
obtained considering various number of terms in the summation
revealed that the equation can provide acceptable results when
the first four terms are included in the summation. Including four
terms requires the use of the first four positive roots of J0ðzÞ,
namely z1 ¼ 2:405; z2 ¼ 5:520; z3 ¼ 8:654 and z4 ¼ 11:792.
Knowing the values of z1 to z4, it is possible to calculate the numer-
ical values of the first four terms of J1ðznÞ, and include them as con-

stants in the final formula. The term, J0 zn r
ro

� �
must be calculated

specifically for a given column’s dimensions and cannot be turned
into a set of constants. The function, J0 zð Þ, is defined by the infinite
series:

J0ðzÞ ¼ 1� z2

1!ð Þ222 þ
z4

2!ð Þ224 �
z6

3!ð Þ226 þ � � � ð16Þ

For values of z >1, the function J0ðzÞ can be approximated using
the formula:

J0ðzÞ ffi
ffiffiffiffiffiffi
2
pz

r !
cos z� p

4

� �
ð17Þ

Fig. 2a compares the results of the two formulas (Eqs. (16) and
(17)) for positive values of z. Since the approximate formula (Eq.
(17)) diverges from exact results for the values of z <1, an addi-
tional linear approximation was defined for that region shown by
the dotted line in Fig. 2a. Combining the two approximate formu-
las, numerical values of J0ðzÞ can be obtained from:

J0ðzÞ ffi
1� 0:2349z; z 6 1ffiffiffiffi

2
pz

q� �
cos z� p

4

� �
; z P 1

(
ð18Þ

The next step in the simplification of Eq. (15) is to calculate the
integral term I� (defined in Eq. (15)), which requires the first
derivative of the applied fire curve. Assuming that any given fire
curve, f ðtÞ, can be approximated by a piecewise linear function,
its first derivative would have constant values over the corre-
sponding regions. This allows the term ð�f 0ðtÞÞ to be extracted
from the integral as a constant, thus simplifying the calculations.
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Fig. 2. Comparison of the exact and approximated (i.e. fitted functions or assumed constant values): (a) J0ðzÞ function; (b) ASTM E119 standard fire curve; (c) time–
temperature curve measured for the outer tube of specimen S3; (d) concrete specific heat [4]; (e) concrete thermal conductivity [4].
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For the purposes of this study, the function f ðtÞ initiating at room
temperature T0 is defined as a bilinear approximation of the given
fire curve expressed as:

f ðtÞ ¼ a1t þ T0; t 6 t1
a2t þ b2; t P t1



ð19Þ

in which a1; a2, and b2 are constants defined to provide the best fit
for the fire curve. Note that for more sophisticated cases, where a
bilinear approximation might be insufficient, multiple linear seg-
ments can be defined to follow the given fire curve with more accu-
racy. Using Eq. (19), the first derivative of the function is given by:

f 0ðtÞ ¼ a1; t 6 t1
a2; t P t1



ð20Þ

As an example, a bilinear function can be defined to represent
the standard ASTM E119 fire curve in �C and t in min. as:

f ASTM E119ðtÞ ¼
78t þ 20; t 6 10 min :

1:8t þ 783:2; t P 10 min :



ð21Þ
Fig. 2b shows the ASTM E119 Standard fire curve along with the
approximate bilinear function. Since this fire curve has an initial
sharp increasing branch followed by a second part over which
temperature increases at a much slower rate, the bilinear function
provides a reasonable approximation. Note that Eq. (21) was
selected as a simple bilinear approximation to demonstrate the
procedure. In this case, temperature values are greater than the
standard curve in the first 30 min (i.e. the steep segment) and
within the ±5% of standard curve temperature in the second seg-
ment. However, any other piecewise linear function can be used
as a fire curve following a similar approach to obtain more conser-
vative or accurate results. The proposed bilinear approximation for
the ASTM E119 standard fire curve gives the following values for
the first derivative:

f 0ASTM E119ðtÞ ¼
a1 ¼ 78; t < 10 min :

a2 ¼ 1:8; t > 10 min :



ð22Þ

Assuming that the function, f ðtÞ, is bilinear, as presented in
Appendix A, Eq. (15) can be simplified as:
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ubilinear fireðr; tÞ ¼ r2o
a2 �0:2770A1ðtÞB1ðtÞ þ 0:0349A2ðtÞB2ðtÞ½
�0:0114A3ðtÞB3ðtÞ þ 0:0052A4ðtÞB4ðtÞ� þ f ðtÞ ð23Þ

All parameters used in Eq. (23) are summarized in Table 1. In
this equation, ro is the radius of a circular section (or the outer
radius of a cylindrical section), r is the radial distance of any
selected point in the section and t is the amount of time (in min-
utes) past from the start of the exposure of the circular section’s
outer edge to the bilinear fire curve, f ðtÞ. Using these parameters,
ubilinear fireðr; tÞ can be calculated as the temperature of the selected
point at the selected time. For simplicity in the sections that follow,
Eq. (23), defining the temperature distribution in a cross-section of
a CFDST column exposed to a bilinear fire curve will be referred to
as uðr; tÞ (instead of ubilinear fireðr; tÞ).

To keep the solution adequately simple for engineering appli-
cations, Eq. (23) only accounts for the conduction mechanism,
thus neglecting the effects of convection and radiation. This sim-
plification, along with the assumption of a uniform temperature
through the thickness of outer and inner tubes, may limit the
accuracy of the solution. In real conditions, convection and radi-
ation mechanisms play an important role in the transfer of ther-
mal energy from the fire source to the outer surface of the
column. However, the solution presented here starts with the
assumption that the time-history of temperature on the surface
of the outer tube is known (and used as a boundary condition),
thus bypassing the heat transfer process through convection and
radiation. Note that for the verification studies described below,
the time–temperature curve for the surface of the outer steel
tube was known and can be used directly in the solution. For
real cases, in which only the fire source temperature is known,
the method should be used by applying the source temperature
directly to the surface of the steel tube (bypassing the convec-
tion and radiation mechanisms in the process). This, along with
the assumption of a similar temperature for the inner and outer
surfaces of the steel tube, ensures that the loss of accuracy due
to the above model simplifications will lead to conservative
results. Moreover, note that radiation and convection effects
inside the CFDST column are considered to be negligible, an
assumption that seemed adequate for the case studies presented
below, but could be further verified against other experimental
or numerical results in future research.
Table 1
Summary of the parameters needed for the calculation of the temperature field using
Eq. (23).

Parameter/function Expression

AnðtÞ;n ¼ 1 to 4
AðtÞ ¼

a1 eð
zna
ro

Þ2t � 1
h i

; t 6 t1

a1 eð
zna
ro

Þ2t1 � 1
h i

þ a2 eð
zna
ro

Þ2t � eð
zna
ro

Þ2 t1
h i

; t > t1

8<
:

BnðtÞ;n ¼ 1 to 4
BnðtÞ ¼ e�ðznaro

Þ2t
h i 1� 0:2349z�n; z�n ¼ zn r

ro
6 1ffiffiffiffiffiffi

2
pz�n

q
Cosðz�n � p

4Þ; z�n ¼ zn r
ro
P 1

(" #

f ðtÞ (Bilinear fire
curve applied to
the outer edge)

f ðtÞ ¼ a1t þ T0; t 6 t1
a2t þ b2; t P t1



T0: Room temperature For

ASTM-E119 Standard fire: a1 ¼ 78; a2 ¼ 1:8 �C/min.
b2 ¼ 783:2 �C t1 ¼ 10 m in.

a2 (Thermal
diffusivity of the
section’s
material)

a2 ¼ k
qcp

zn;n ¼ 1 to 4 (First
four positive
roots of the
Bessel function,
J0ðzÞ)

z1 ¼ 2:405; z2 ¼ 5:520; z3 ¼ 8:654; z4 ¼ 11:792
3.3. Verification of the heat transfer solution

The analytical approach described in the previous section was
applied to a column selected from a series of fire tests conducted
on CFDST columns by Imani et al. [16]. The selected specimen
(referred to as Specimen S3 in that study) was a 3048 mm (10 foot)
high CFDST column with outer and inner tube diameters of 203.2
and 127.0 mm (8 and 5 in.), respectively, and thicknesses of
2.8 mm (0.11 in.) for the outer, and 2.3 mm (0.09 in.) for the inner
tube. The area between these tubes was filled with 60 MPa (8.8 ksi)
concrete. The tubes were capped with steel plates at the top and
bottom ends. A built up section (composed of steel plates and
channels) was added to the bottom end of the specimen (to serve
the needs of subsequent seismic testing). An additional built-up
section (composed of steel plates and concrete infill) was added
to the bottom end of the column for length extension before fitting
inside the vertical fire furnace. Note that the mentioned built-up
section was oriented in the plane of the furnace (it did not con-
tribute to the out of plane bending).

The undamaged CFDST column was subjected to a constant
axial load of 311.4 kN (70 kips) and a controlled air temperature
inside the furnace following the ASTM E119 standard fire curve.
Note that the mentioned CFDST column is referred to as ‘‘the spec-
imen” in the rest of this paper. Since the time–temperature curve
recorded on the surface of the outer tube of the specimen differed
slightly from the standard ASTM E119 curve, a new bilinear func-
tion ðf ðtÞÞ was fitted to the recorded curve, as follows:

f S3 ðtÞ ¼
17:03t þ 20; t 6 42:75 min :

4:27t þ 565:49; t P 42:75 min :



ð24Þ

Fig. 2c plots the recorded values of temperature versus the fit-
ted bilinear function with first derivatives:

f 0S3 ðtÞ ¼
a1 ¼ 17:03; t 6 42:75 min :

a2 ¼ 4:27; t P 42:75 min :



ð25Þ

Substituting Eqs. (24) and (25) into Eq. (23), the temperature
distribution in the cross-section of the specimen can be calculated
using the set of parameters: ro ¼ 4 in., ri ¼ 2:5 in., as given by
Imani et al. [16] and a2 (Eq. (4)) specified for concrete. Eurocode
4 general rules for structural fire design specify temperature inde-
pendent values for the specific heat and thermal conductivity of
concrete to be used in simplified calculation procedures. The spec-
ified constant values of 1000 J/kg �C for the specific heat and 1.6
W/m �C for the thermal conductivity of concrete were used here.
Fig. 2d and e show the temperature dependent versus constant val-
ues for both of these parameters. Note that the specific heat
parameter shows little variation as a function of temperature.
Thermal conductivity, on the other hand, changes significantly at
higher temperature levels. Therefore, using the recommended con-
stant value consequently increases the rate of heat transfer
through the concrete material, leading to slightly conservative pre-
dictions of the axial load capacity of the column at the end of the
process. Recall that constant values for these parameters must be
used here because the governing partial differential equation was
solved with the assumption of a constant a. Assuming a density
of 140 lb/in3 (2242 kg/m3) for concrete (normal weight), a2 can
be calculated as:

a2 ¼ k
qcp

ffi 0:07 in2
=min : ffi 7:13� 10�7 m2=s ð26Þ

Available experimental data [16], along with results from finite
element simulations of fire tests on CFDST columns were used to
verify the accuracy of Eq. (23) in predicting temperature values
in the inner parts of the column when the temperature of outer
steel tube (as a function of time) is given as the input. Finite
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element simulations paralleled the experiments by a sequentially
coupled nonlinear thermal-stress analysis to study the effects of
CFDST column’s exposure to the Standard ASTM E119 fire.
Analysis results from 3D models using material properties adopted
from the Eurocode 4 general rules for structural fire design pro-
vided a reasonable comparison to experimental results.

Fig. 3a shows the variation of temperature through time for a
point at mid-width of the concrete section, as obtained from test
recordings [16], finite element simulations [21,22] and the analyt-
ical solution proposed for the heat transfer equation (Eq. (23)).
0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
em

pe
ra

tu
re

 (°
C

)

Time (min.)

Outer Tube (test)
Outer Tube (Bilnear Approx.)
Mid. Concrete (ABAQUS)
Mid. Concrete (Analytical Sol. from Eq. (23))
Mid. Concrete (test)

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
em

pe
ra

tu
re

 (°
C

)

Time (min.)

Outer Tube (test)
Outer Tube (Bilnear Approx.)
Inner Tube (ABAQUS)
Inner Tube (Analytical Sol. from Eq. (23))
Inner Tube (test)

0

100

200

300

400

500

600

700

800

900

1000

63 68 73 78 83 88 93 98 103

T
em

pe
ra

tu
re

 (
°C

)

Distance from the Center of the CFDST Column's 
Cross -section (mm)

Finite Element
Analytical (Eq. (23))

t=20 min

t= 0 min.

t=40 min.

t=60 min.

t=80 min.

(a)

(b)

(c)

Fig. 3. Temperature distribution inside a CFDST column from the results of fire test
for specimen S3 [16], finite element simulation [21,22] and the analytical solution
(Eq. (23)): (a) time history at a point at mid-width of the concrete section; (b) time
history at a point on the surface of inner steel tube; (c) variation of temperature
through the thickness of the specimen.
Note that the analytical curves shown for the outer tube tempera-
ture are arbitrary (but accurate enough) bilinear representations of
the recorded values that were used as inputs for the solution and
are not part of the results. Having this input, Eq. (23) was used
to calculate temperature values for points with r1 ¼ 3:25 in. (corre-
sponding to a point at mid-width of concrete) and r2 ¼ ri ¼ 2:5 in.
(corresponding to a point on the outer surface of the inner tube) as
a function of time. The analytical solution is in good agreement
with the experimental and numerical (FE analysis) results.

Note that, especially in the last 40 min of the fire, temperature
values obtained from Eq. (23) are slightly higher than the ones
from finite element analyses. This is contradictory to the fact that
the bilinear approximation used for the temperature curve (which
was applied as a boundary condition to the outer tube) had lower
temperatures than the ones from the recorded data (also used in
the finite element model). This discrepancy was caused by using
a constant diffusivity parameter ðaÞ for concrete in the analytical
solution (Eq. (23)). Using the constant value based on Eurocode 4
leads to slightly conservative results (i.e. higher temperature val-
ues for a certain point at a certain time) as shown in Fig. 3a. The
finite element results, on the other hand, were based on detailed
3D models of CFDST columns with nonlinear material models for
steel and concrete that simulated the conduction and radiation
mechanisms and accounted for temperature dependency of heat
transfer parameters for each material [21,22].

Fig. 3b shows similar results (as in Fig. 3a) for a point on the sur-
face of the inner tube of the same specimen. Results from the finite
element heat transfer analysis and the analytical solution (Eq. (23))
are in good agreement. The test results, however, show signifi-
cantly higher temperatures than those of the other two curves dur-
ing certain periods of the fire test. The difference is attributed to
sudden fluctuations of the recorded temperature possibly due to
pressure built-ups and releases in the CFDST columns, an issue
which was not accounted for in either of the finite element or ana-
lytical (Eq. (23)) approaches. Test results for inner tube tempera-
ture seem to be significantly higher than the predicted values,
meaning the predictions can be unconservative. However, it should
be noted that the predictions follow the general trend seen in the
experiment, and the spikes in the inner tube temperature, which
could not be captured in predictions, were more likely localized
heat effects and did not have a significant impact on the column
behavior. Results of the finite element simulations showed that
the models were successful in predicting the overall behavior
and fire resistance of CFDST columns [21,22].

To further investigate the accuracy of Eq. (23) in calculating the
distribution of temperature in the cross-section of a CFDST column,
temperature variation through the thickness of the concrete layer
are plotted in Fig. 3c. A comparison with finite element analysis
of the same specimen [21,22] for a number of points in time (i.e.,
t ¼ 0; t ¼ 20; t ¼ 40; t ¼ 60 and t ¼ 80 min.) shows good agree-
ment. Acceptable results of the simplified method supports the
assumption of negligible radiation and convection effects inside
the CFDST column.
4. Calculation of the axial load capacity of CFDST columns
subjected to fire

4.1. Development of the analytical procedure

Given the temperature distribution through the cross-section of
a CFDST column, its axial load capacity can be calculated using the
modified material properties at a given time during exposure to
the ASTM E119 (or any other defined) fire curve. Uniform temper-
ature values for the outer steel tube with radius ro (Fig. 1c) at time
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t� measured from the start of the outer tube’s exposure to the bilin-
ear fire curve, f ðtÞ, is given by:

Tost;t� ¼ f t�ð Þ ð27Þ
and the uniform temperature of the inner steel tube with radius ri is
given by:

Tist;t� ¼ u ri; t�ð Þ ðusing Eq: ð23ÞÞ ð28Þ
The concrete section can be divided into n concentric layers

with each layer having a uniform temperature distribution
(Fig. 1c). This discretization can account for the non-uniform tem-
perature distribution in the concrete section, with its accuracy
dependent on the selected number of layers (i.e., a larger n leads
to better accuracy). The uniform temperature for each layer is
selected to be equal to the temperature of the point located on a
circle going along the mid-width of the layer.

Uniform temperature values for concrete layer i (shown in
Fig. 1c) at time t� measured from the start of the outer tube’s expo-
sure to the fire curve, f ðtÞ, is given by:

Tcri ;t
� ¼ u

2n� 1ð Þ ro � to � rið Þ
2n

; t�
� �

ðusing Eq: ð23ÞÞ ð29Þ

where to is the thickness of the outer tube and n is the number of
concrete layers.

According to the Eurocode general rules for structural fire
design [4], the complete stress–strain relationship for steel at a
given temperature can be constructed using four parameters: elas-
tic modulus (Ec Tð Þ), proportional limit stress ðf p Tð ÞÞ, effective yield
stress (f y Tð Þ) and tensile strength ðf u Tð ÞÞ. The curve constructed
using these parameters is shown in Fig. 4. Eurocode provides tab-
ulated data for determining the four parameters at different tem-
peratures. To simplify the calculation of these parameters at any
given temperature, approximate fitted curves were developed in
this study as follows:

The reduction factor for elastic modulus of steel, REs , at temper-
ature T is given by:

REs ;T ¼ EsðTÞ
Es

¼ 1

1þ T
523

� �4 � 0:04 ð30Þ

in which T is in �C and Es is the elastic modulus at room temperature.
Similarly for the yield stress, the reduction factor, Rfy , is given by:

Rfy ;T ¼ f y Tð Þ
f y

¼
1; T 6 400

1:10

1þ T
572ð Þ6:54 ; T > 400

(
ð31Þ
Fig. 4. Stress–strain curve of steel in uniaxial tension at temperature T (Eurocode
curve compared with the simplified function (Eq. (42))).
in which T is in �C and f y is the yield stress at room temperature.
The reduction factor for the proportional limit stress, Rfp , can be cal-
culated as:

Rfp ;T ¼
f pðTÞ
f p

¼ 1; T6100
1:27�2:71�10�3Tþ1:71�10�6T2�2:69�10�10T3; T>100



ð32Þ

in which f p is the proportional limit stress at room temperature.
Note that f p ¼ f y for room temperature (T ¼ 20 �C). Finally, the ten-
sile stress of steel at temperature T is given as:

f u Tð Þ ¼ 1:25f yðTÞ; T 6 400
f yðTÞ; T > 400

(
ð33Þ

Fig. 5 compares the tabulated data from Eurocode for the reduc-
tion factors mentioned above ðREs ;Rfy and Rfp Þ with the proposed
fitted functions. The functions are shown to be sufficiently
accurate.

According to the Eurocode specifications for concrete at high
temperatures, the ascending branch of the stress–strain curve for
concrete in compression at temperature, T, can be constructed
using two parameters, namely the compressive strength (f 0c) and
the strain at maximum stress ðecu Tð ÞÞ. Note that after this point,
the curve continues with a descending branch, down to a zero
stress at the strain of ece Tð Þ.

A fitted function was also developed here for the reduction fac-
tor to adjust the maximum compressive strength of concrete at
high temperatures, Rf 0c , based on the tabulated data provided in
Eurocode 4. The resulting equation for Rf 0c is given by:

Rf 0c ;T ¼ f 0c Tð Þ
f 0c

¼ 1:12

1þ T
597

� �3:27 � 0:13 ð34Þ

in which T is in �C and f 0c is the maximum compressive stress of con-
crete at room temperature. Using two additional fitted functions,
ecuðTÞ and eceðTÞ can be calculated as:

ecuðTÞ

¼ 1:75�10�3þ3:45�10�5T�1:22�10�7T2þ2:14�10�10T3; x<600
0:025; xP600

(

ð35Þ

eceðTÞ ¼ 1:99� 10�2 þ 2:50� 10�5T ð36Þ
Figs. 5d, e and f show plots of the values of Rf 0c ;T ; ecuðTÞ and eceðTÞ

extracted from tabulated data in Eurocode, along with the ones cal-
culated using Eqs. (34)–(36). The fitted functions are shown to fol-
low the Eurocode’s specifications accurately.

Now that the stress at both steel and concrete sections can be
calculated as a function of strain and temperature ðr e; Tð ÞÞ, the
total applied axial load on a CFDST column can be calculated as:

Paxial e; Tð Þ ¼ Aostrost e; Tð Þ þ Aistrsti e; Tð Þ þ
Xn
i¼1

Acrircri e; Tð Þ ð37Þ

in which Aost=ist=cri refers to the area of the outer steel tube,
inner steel tube, and ith concrete layer, respectively. Likewise,
rost=ist=cri e; Tð Þ refers to the value of uniform stress in the same com-
ponents as a function of strain and temperature, which can be cal-
culated using the stress–strain relationships mentioned above. Note
that the formula is written for a concrete region divided into n lay-
ers and assumes a compressive strain uniformly distributed over
the cross-section. In each of the terms on the right hand side of
Eq. (37), T refers to the temperature of one specific layer (inner tube,
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Fig. 5. Reduction factor for the structural properties of steel and concrete at high temperatures (tabulated data from Eurocode [4] vs. calculated values from the proposed
fitted functions): for steel: (a) elastic modulus; (b) yield stress; (c) proportional limit stress; for concrete: (d) maximum compressive strength; (e) strain at maximum
compressive stress; (f) strain at zero compressive stress (ultimate strain).
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outer tube, or concrete) at a certain time (the ost; ist and cri indices
for T have been removed for simplification). At a certain tempera-
ture, when going from zero to higher values of strain, Paxial e; Tð Þ
increases to its maximum value, attained when the steel and con-
crete layers reach a uniform stress distribution at their maximum
strength values ðf uðTÞ and f 0cðTÞÞ.

The critical buckling load as a function of strain and tempera-
ture, Pcritical e; Tð Þ, can be written as:

Pcritical e; Tð Þ ¼ p2

KLð Þ2
IostEtost e; Tð Þ þ IistEtsti e; Tð Þ þ

Xn
i¼1

Icri Etcri
e; Tð Þ

" #

ð38Þ
in which, Iost=ist=cri and Etost=ist=cri

e; Tð Þ refer to the moment of inertia

and tangent modulus values for the different sections, and KL is
the effective length of the column. Note that the use of the tangent
modulus in Eq. (38) allows for the calculation of the elastic and
inelastic critical buckling loads as the materials go through increas-
ing values of strain. At any given temperature level, the tangent
moduli of steel and concrete decrease while going towards higher
strain values. Therefore, Eq. (38) returns the maximum value for
Pcritical e; Tð Þ at (e ¼ 0) (calculated Pcritical e; Tð Þ remains constant or
decreases as e increases). According to the Eurocode specifications,
the tangent modulus of steel heated to the temperature of T, can be
calculated as:
Est e; Tð Þ ¼

EsðTÞ; e < epðTÞ
b 0:02�eð Þ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� 0:02�eð Þ2

p ; epðTÞ < e < 0:02

f uðTÞ�f yðTÞ
0:02 ; 0:02 < e < 0:04

0; 0:04 < e < 0:15

8>>>>><
>>>>>:

ð39Þ

Note that Eq. (39) is given for strains up to the start of the
descending branch of the uniaxial tensile behavior and must be
used separately for the inner and outer steel tubes, as they would
be at different temperature levels. Similarly for concrete, the tan-
gent modulus for strains up to the limit of compressive strength
can be calculated as:
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Ect e; Tð Þ ¼ f cðTÞ
3

2þ e
ecuðTÞ

� �3 �
9

ecuðTÞ
e

ecuðTÞ

� �3
2þ e

ecuðTÞ

� �3� �2
2
6664

3
7775 ð40Þ

Eq. (40) can be used separately for each of the nlayers of con-
crete at their respective calculated uniform temperature. Fig. 6a
shows generic plots for the Paxial e; Tð Þ and Pcritical e; Tð Þ functions
for a fixed (current) T for each of the steel and concrete layers
and a varying e. Finally, the axial load capacity of the column after
a certain duration of exposure to a given fire curve can be deter-
mined from the intersection of the two functions Paxial e; Tð Þ and
Pcritical e; Tð Þ (Eqs. (37) and (38)), as shown in Fig. 6a. Defining eint
as the strain value of the intersection point gives:

Paxial CapacityðTÞ ¼ Paxial eint; Tð Þ ¼ Pcritical eint ; Tð Þ ð41Þ

Assuming a uniform temperature distribution in each of the
concrete sections, the inner tube, and the outer tube, Eq. (41)
can be solved by incrementally increasing the strain value up to
the point when the two load functions ðPaxial e; Tð Þ and
Pcritical e; Tð ÞÞ return the same load, which is then the axial capacity
of the column. This part of the procedure (i.e., solving Eq. (41) by
incrementally increasing the strain value) is similar to what is
presented in the simple calculation method described in Annex
H of the Eurocode 4 general rules for structural fire design.
Alternatively, the equation can be solved graphically by plotting
the two curves as functions of strain and finding their intersecting
point.

A more simplified procedure was developed to provide an
acceptable approximation of the axial load capacity of CFDST col-
umns by calculating the values of Paxial e; Tð Þ and Pcritical e; Tð Þ at a
few selected key points. The procedure is presented in the follow-
ing section.
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Fig. 6. Generic plots of the Paxial e;Tð Þ and Pcriticalðe;TÞ functions for a fixed T and
varying e: (a) the intersection of Paxial e;Tð Þ and Pcriticalðe;TÞ; (b) simplified
P�

critical e;Tð Þ (Eq. (47)).
4.2. Simplified step by step procedure to calculate the axial load
capacity of CFDST columns under fire

To reduce the complexity of the analytical approach described
above for calculating the axial load capacity of CFDST columns sub-
jected to fire, an alternative set of simplified equations were
selected to calculate the uniform stress and tangent modulus to
be used in the different parts of the cross-sections, as functions
of strain and temperature. For steel, as shown in Fig. 4, the ellipti-
cal part of the Eurocode stress–strain curve (for strains in the range
ep < e < 0:02), which has a varying tangent modulus as specified in
Eq. (39), was replaced by a multi-linear curve, turning the refer-
ence curve into four linear segments. The new stress–strain rela-
tionship for different strain ranges with their corresponding
tangent modulus is given as:

r�
steelðe; TÞ ¼

Es1 ðTÞe; e < epðTÞ
f pðTÞ þ Es2 ðe� epðTÞÞ; epðTÞ < e < 0:02
f yðTÞ þ Es3 ðe� 0:02Þ; 0:02 < e < 0:04
f uðtÞ; 0:04 < e < 0:15

8>>><
>>>: ð42Þ

in which r�
steelðe; TÞ is the simplified function for the stress–strain

relationship of steel at temperature T. Note that Es1 ; Es2 ; Es3 ; Es4 refer
to the tangent modulus of steel over different strain ranges and are
given as:

E�
st ðe; TÞ ¼

Es1 ðTÞ ¼ EsðTÞ; e < epðTÞ
Es2 ðTÞ ¼

f yðTÞ�f pðTÞ
0:02�epðTÞ ; epðTÞ < e < 0:02

Es3 ¼
f uðTÞ�f yðTÞ

0:02 ; 0:02 < e < 0:04
Es4 ¼ 0; 0:04 < e < 0:15

8>>>>><
>>>>>:

ð43Þ

Similarly for concrete, since the stress–strain relationship given
in the Eurocode leads to a complicated nonlinear equation for the
tangent modulus (Eq. (40)), Hognestad’s equation [23], which is a
polynomial of degree two, was used to express the stress–strain
relationship for concrete as follows:

r�
concrete e; Tð Þ ¼ f 0cðTÞ

2e
ecuðTÞ �

e
ecuðTÞ
� �2

" #
ð44Þ

in which f 0cðTÞ and ecuðTÞ are calculated based on the Eurocode spec-
ifications (using the fitted functions presented above in Eqs. (34)
and (35)). Note that Eq. (44) gives the stress–strain relationship
up to the point of maximum compressive stress, f 0cðTÞ, which occurs
at the strain of ecuðTÞ for concrete at a given temperature, T. Taking
the first derivative of Eq. (44) with respect to e, the tangent modulus
for concrete can then be calculated as:

E�
ct e; Tð Þ ¼ 2f 0cðTÞ

ecuðTÞ 1� e
ecuðTÞ

� �
ð45Þ

which is a simple linear equation in terms of e. Note that the ‘*’ used
in the equations above is used to distinguish the new simple equa-
tions from the previously presented Eurocode equations for the
same parameters. Using the new set of equations for the stress
and tangentmodulus calculation, Eqs. (37) and (38) are rewritten as:

P�
axialðe; TÞ ¼ Aostr�

ostðe; TÞ þ Aistr�
stiðe; TÞ þ

Xn
i¼1

Acrir
�
cri
ðe; TÞ ð46Þ

P�
criticalðe; TÞ ¼

p2

KLð Þ2
IostE

�
tost ðe; TÞ þ IistE

�
tsti
ðe; TÞ þ

Xn
i¼1

Icri E
�
tcri

ðe; TÞ
" #

ð47Þ
Now redrawing the curve for the critical buckling load from

Fig. 6a, this time with more details, according to the changes of
the tangent moduli of steel and concrete over different strain
ranges, a number of discontinuity points occur in the curve as



Fig. 7. Strain values needed for the calculation of P�
critical0

; . . . ;P�
criticaln : (a) cases with

e3 ¼ mini¼1�n ecui
ðTÞ �

(n = 5); (b) cases with e3 ¼ 0:02; e4 ¼ mini¼1�n ecui
ðTÞ �

(n = 7).

R. Imani et al. / Engineering Structures 102 (2015) 156–175 165
shown in Fig. 6b. The discontinuities are caused by sudden changes
in the tangent modulus of steel when the strain in each of the inner
or outer tubes gets past the limits of epðTÞ (which is different for
the outer and inner steel tubes) and 0.02. Note that changes in
the tangent modulus of concrete do not create discontinuities
because it is defined as the first derivative of a continuous function.

Considering the possible range of values for ecuðTÞ according to
the Eurocode specifications (0:0025 6 ecu 6 0:025), the strain lim-
its e1; e2; e3 and e4 can be determined as follows:

e1 ¼ e0post ðTÞ
e2 ¼ epist ðTÞ
e3 ¼ min 0:02;mini¼1�n ecui ðTÞ

 � �
e4 ¼ mini¼1�n ecui ðTÞ

 � ðapplicable only if e3 ¼ 0:02Þ

ð48Þ

The first strain limit (i.e., e1), refers to the point when the outer
steel tube reaches the end of its proportional limit according to
Fig. 4 (ep). Note that the outer steel tube will always reach ep
sooner than the inner tube because the outer steel tube is at a
higher temperature level and, according to Eurocode specifications
for steel material, epðTÞ decreases as temperature increases.
Therefore, epost < epist . The second discontinuity in the P�

critical curve
occurs when the strain value of the cross-section reaches epist ,
which is referred to as the e2 limit. Two different scenarios must
be considered for determination of e3. This limit is defined as the
smaller of 0.02, i.e., when steel starts the hardening branch (shown
in Fig. 4) and the smallest strain value that gets one of the concrete
layers to the maximum stress point ðecuÞ.

Note that according to Eq. (48), the e4 limit is only needed if
e3 ¼ 0:02 < mini¼1�n ecui ðTÞ

 �
. In other words, the curve in Fig. 6b

needs to be continued up to the point when the uniform strain in
the section reaches to the limit of ecuðTÞ for one of the concrete lay-
ers, which will be the limit of e ¼ mini¼1�n ecui ðTÞ

 �
. The behavior of

concrete in compression enters the descending branch at this point
and Eq. (45) can no longer be used for the calculation of the tan-
gent modulus. However, when the strain level in the section
reaches this limit, total critical buckling load has dropped more
than needed to create an intersection with the applied axial load,
P�
axialðe; TÞ, or if not, the force level is low enough to consider the

column to have no axial resistance at that temperature level. This
makes the rest of the P�

criticalðe; TÞ curve, irrelevant (because the
P�
axialðe; TÞ curve will start to descend after this point). Note that

the strain limits in Fig. 6b are based on the assumption that
mini¼1�n ecui ðTÞ

 �
> 0:02.

Note that epost ðTÞ will always be lower than epist ðTÞ because the
outer steel tube is at a higher temperature level (according to
Eurocode specifications, for a certain steel, epðTÞ decreases as tem-
perature increases). According to the strain limits defined in Eq.
(48), the tangent moduli for the inner and outer tubes at the tem-
peratures of Tost and Tist are given as:

Eostt ðTostÞ; Eistt ðTistÞ ¼

Eost1 ðTÞ; Eist1 ðTÞ e < e1
Eost2 ðTÞ; Eist1 ðTÞ e1 < e < e2
Eost2 ðTÞ; Eist2 ðTÞ e2 < e < 0:02
Eost3 ðTÞ; Eist3 ðTÞ 0:02 < e < 0:04

8>>><
>>>: ð49Þ

in which Eost=ist1�3 are calculated using Eq. (43). Note that the loca-
tion of the strain limits e3 and e4 with respect to the 0.02 and
0.04 limits must be determined specifically for a given problem.
At this point, the intersection of the two curves defined by the func-
tions, P�

axialðe; TÞ and P�
criticalðe; TÞ (Eq. (46)), which is equal to the axial

load capacity of the CFDST column after being exposed to the first t
minutes of a given fire curve, f ðtÞ, can be determined by following
these steps:
Step1. Using the analytical solution derived for the heat transfer
problem (Eq. (23)), determine the uniform temperature val-
ues for the outer steel tube, inner steel tube and all of the
nconcentric concrete layers at time t after the start of the
CFDST column’s exposure to the given fire curve, f ðtÞ.

Step2. Determine e1; e2; e3 and e4 (if applicable) for the column
using Eq. (48).

Step3. Calculate the critical buckling load, using the tangent moduli
of different steel and concrete regions, for the strain values
shown with dots in Fig. 7a, if e3 ¼ mini¼1�n ecui ðTÞ

 �
, or

Fig. 7b, if e3 ¼ 0:02; e4 ¼ mini¼1�n ecui ðTÞ
 �

. Note that these
critical buckling load values are referred to as
P�
critical0

; P�
critical1

; . . . ; P�
critical5

for the first case and
P�
critical0

; P�
critical1

; . . . ; P�
critical7

for the second case, as shown in
Fig. 6b. Recall that the sudden drops (discontinuities) occur
due to the sudden changes in the tangent modulus of steel
as the strain value jumps from one of the strain ranges
defined in Eq. (48) to the other. The infinitesimal value � is
used to distinguish between the tangent modulus when
the strain is just below or just above one of the strain ranges
defined in Eq. (48). The slight gradual decreases seen
between any two discontinuity points in Fig. 6b are caused
by the gradual reduction of the concrete tangent modulus
as the curve goes to higher strains.

Step4. Assuming P�
axiali

¼ P�
axialðei; TÞ that can be calculated using Eq.

(46) for the strain values e0 ¼ 0; e2; e3 and e4 (given by Eq.
(48)), axial load capacity of the column can be determined
through the simple iterative process defined in Eq. (50).
Knowing that P�

axial0
¼ 0 and starting from i ¼ 1:
Paxial capacity

¼

P�critical2i�2
P�axiali

�P�critical2i�1
P�axiali�1

P�axiali
�P�axiali�1

� �
� P�critical2i�1

�P�critical2i�2

� � ; P�
critical2i�1

<P�
axiali

P�
axiali

; P�
critical2i

6P�
axiali

6P�
critical2i�1

Redo the process for i¼ iþ1; P�
axiali

<P�
critical2i

8>>>><
>>>>:

ð50Þ
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in which P�
criticali

’s come from the calculation in step 3 and imax

is equal to 4 when the strain limit of e4 is defined according
to Eq. (48), and to 3 otherwise.
Fig. 8 visually explains the logic used in the definition of Eq.
(50). For a given i (which varies between 1 to 4 as explained
before), three cases are possible with respect to P�

axiali
. First case

is when P�
axiali

> P�
critical2i�1

. This condition, as shown in Fig. 8a,
ensures that an intersection will occur between the P�

axial and
P�
critical curves. Since determining the exact intersection is challeng-

ing, a straight line is defined using the points P�
axiali

and P�
axiali�1

and
its intersection with the linear portion of the P�

critical curve is
selected to be the axial load capacity of the column (i.e.,
P�
axial capacity). First line of Eq. (50) calculates the axial load capacity

for this case. Note that the equation provides a slightly conserva-
tive result compared to the exact solution (lower capacity).

The second case occurs when P�
critical2i

6 P�
axiali

6 P�
critical2i�1

. In this
case, as shown in Fig. 8b, the P�

axial curve crosses the P�
critical curve

when it drops due to a sudden change in elastic modulus of steel.
In this configuration, the intersection occurs right at the point of
P�
axiali

. If P�
axiali

6 P�
critical2i

(the third case), no intersection can be
found between the P�

axial and P�
critical curves and new points on both

curves need to be calculated ði ¼ iþ 1Þ. Note that Fig. 8 (and simi-
larly Figs. 4 and 6) show generic plots of curves which are used in
the paper to explain their general trend and properties and explain
Strain

P*critical
P*axial

(from Eq. 7.50)

Intersection Point

Strain

P*critical
P*axial

(from Eq. 7.50)

Intersection Point

Graphical explanation for calculating the axial load capacity using Eq. (50):
s with P�

critical2i�1
< P�

axiali
; (b) cases with P�

critical2i
6 P�

axiali
6 P�

critical2i�1
.

the solution. These plots are not a solution for a specific case and
do not have numerical values.

4.3. Verification of the analytical approach to calculate axial load
capacity of CFDST columns under fire

The analytical approach described in Section 4.1 for calculating
the axial load capacity of CFDST columns subjected to fire was
applied to the same tested column from Imani et al. [16] that
was used in Section 3.3 for the verification of the heat transfer
solution. Knowing the temperature distribution in the cross-
section of the specimen, which was calculated and verified using
the solution described in Section 3, axial load capacity of the
specimen can be calculated using Eq. (41), which equates two
load curves that are determined using the stress distribution in
different sections at certain temperature and strain levels, and
the current critical buckling load of the column calculated accord-
ing to the tangent modulus of different sections at certain tem-
peratures. A simple MATLAB code was developed to generate
the mentioned load curves and solve for the equation to deter-
mine the axial load capacity of any given CFDST column subjected
to the first t minutes of a predetermined fire curve. Results from
this MATLAB code for the mentioned specimen are presented
later in this paper.

In addition to applying the procedure described in Section 4.1,
the axial load capacity of the specimen subjected to the ASTM
E119 fire curve was also determined using the simplified step by
step procedure presented in Section 4.2 for verification.

According to the test results [16], the CFDST specimen had a fire
resisting time of about 65 min under a constant axial load of 311.4
kN (70 kips). In a separate study, Imani et al. simulated the com-
plete thermal-stress process using the finite element method, pre-
dicting a similar fire resisting time for the numerical model of the
specimen [21,22]. To verify of the proposed analytical method
described in Section 4.1, the axial load capacity of the CFDST spec-
imen was calculated after 50, 65 and 80 min from the start of the
outer tube’s exposure to the bilinear fire curve defined by
Eq. (24) (which follows the outer tube’s recorded temperature
curve from the test).

To assess the sensitivity of the assumed number of concrete lay-
ers, the procedure was conducted for two cases, namely n ¼ 2 and
n ¼ 3. Using Eqs. (27)–(29), the uniform temperature values for the
sections of inner and outer tubes, and the selected number of con-
crete layers, along with their corresponding temperature modified
material properties were calculated for use in Eqs. (37) and (38).
These parameters are presented in Table 2 with initial values for
material properties at room temperature taken from the experi-
mental study.

According to the study by Imani et al., the specimen was tested
with fixed and semi-rigid connections at its top and bottom ends,
respectively. Due to the lack of information about the properties of
the semi-rigid connection at the bottom end, two different cases,
with fixed and pinned connections at the base, were considered
in the axial load capacity calculations. Fig. 9a and b show the buck-
ling deformation of the column under the two mentioned configu-
rations. Note that the bottom portion of the column, consisting of a
built-up section (steel box filled with concrete) added to accom-
modate the cyclic test setup requirements, was assumed as a rigid
segment with a total length of 355.6 mm. The remaining CFDST
column height was 2692 mm.

For the fixed–fixed configuration (Fig. 9a), the corresponding
effective length for use in Eq. (38) was calculated as
KL ¼ 1346 mm (K ¼ 0:5), with L = 2692 mm. The critical buckling
load for the fixed-pinned conditions needs to be calculated as a
special case because the rigid part is engaged in the buckling defor-
mation. Assuming wðxÞ is the deflected shape of the column with x



Table 2
Uniform temperature and material properties calculated for different parts of the cross-section of the tested specimen after 50, 65 and 80 min. of exposure to the ASTM E119 fire.

Steel regions Outer tube Inner tube Concrete regions n ¼ 2 n ¼ 3

1 2 1 2 3

Conditions Outer radius (mm) 101.6 63.5 Outer radius (mm) 98.8 81.0 98.8 87.1 75.4
Thickness (mm) 2.8 2.3 Thickness (mm) 17.8 17.8 11.7 11.7 11.7

Room temperature Es (MPa) 200,000 200,000 Ec (MPa) 38,696 38,696 38,696 38,696 38,696
f p (MPa) 345 303 f 0c (MPa) 66.9 66.9 66.9 66.9 66.9

f y (MPa) 345 303 ecu 0.0025 0.0025 0.0025 0.0025 0.0025

f u (MPa) 400 365 ece 0.0200 0.0200 0.0200 0.0200 0.0200

After 50 min. of fire exposure Temp. (�C) 778.9 440.1 Temp. (�C) 513.5 681.0 488.2 594.3 710.5
EsðTÞ (MPa) 25,763 125,147 f 0cðTÞ (MPa) 38 21 41 29 18

f pðTÞ (MPa) 24.1 117 ecuðTÞ 0.0164 0.0250 0.0145 0.0242 0.0250

f yðTÞ (MPa) 44.4 283 eceðTÞ 0.0353 0.0403 0.0345 0.0377 0.0412

f uðTÞ (MPa) 44.4 283 – – – – – –

After 65 min. of fire exposure Temp. (�C) 843.0 573.8 Temp. (�C) 634.1 767.0 613.5 698.8 790.0
EsðTÞ (MPa) 17,793 73,655 f 0cðTÞ (MPa) 25 14 27 19 13

f pðTÞ (MPa) 13.9 69 ecuðTÞ 0.0250 0.0250 0.0250 0.0250 0.0250

f yðTÞ (MPa) 27.8 165 eceðTÞ 0.0389 0.0429 0.0383 0.0409 0.0436

f uðTÞ (MPa) 27.8 165 – – – – – –

After 80 min. of fire exposure Temp. (�C) 907.1 678.6 Temp. (�C) 729.1 841.7 711.9 783.7 861.5
EsðTÞ (MPa) 11,899 44,156 f 0cðTÞ (MPa) 17 10 18 13 9

f pðTÞ (MPa) 6.5 41 ecuðTÞ 0.0250 0.0250 0.0250 0.0250 0.0250

f yðTÞ (MPa) 17.7 82 eceðTÞ 0.0418 0.0452 0.0413 0.0434 0.0457

f uðTÞ (MPa) 17.7 82 – – – – – –

Fig. 9. Buckling deformation of the CFDST column with the rigid part at the bottom end subjected to different boundary conditions: (a) fixed–fixed configuration; (b) fixed-
pinned configuration; (c) free body diagrams for the fixed-pinned configuration

R. Imani et al. / Engineering Structures 102 (2015) 156–175 167
measured from the top end of the column as shown in Fig. 9c, the
governing differential equation and the appropriate boundary con-
ditions can be written as [24]:

EIw00 xð Þ þ Pw xð Þ þ R x� L� L1ð Þ; 0 6 x 6 L

B:C:0s :

1ð Þ w 0ð Þ ¼ 0
2ð Þ w0 0ð Þ ¼ 0
3ð Þ w Lð Þ ¼ L1w0 Lð Þ

8><
>:

ð51Þ

Eq. (51) is derived by satisfying the moment equilibrium at
point A at a distance x. The general solution for the governing dif-
ferential equation can be written as:

w xð Þ ¼ a1 sin lxð Þ þ a2 cos lxð Þ � R
P
ðx� L� L1Þ ð52Þ

in which l ¼ ffiffiffiffiffiffiffiffiffiffi
P=EI

p
and the term � R

P ðx� L� L1Þ
� �

is the particular
solution (R is the support reaction at the pinned end). Satisfying the
first and second boundary conditions gives:
a1 ¼ R
Pl

ð53Þ

a2 ¼ �R Lþ L1ð Þ
P

ð54Þ

Substituting Eqs. (53) and (54) in Eq. (52) gives:

w xð Þ ¼ R
Pl

sin lxð Þ � R Lþ L1ð Þ
P

cos lxð Þ � R
P
ðx� L� L1Þ ð55Þ

Applying the third boundary condition to Eq. (55), results in:

Lþ 2L1ð Þ cos lLð Þ þ L1l Lþ L1ð Þ � 1
l

� �
sin lLð Þ � 2L1 ¼ 0 ð56Þ

which must be solved for roots of l, to obtain the critical buckling
load values for different buckling modes ðPcritical ¼ l2EIÞ. If the rigid
section length L1 ¼ 0, Eq. (56) reduces to tan lLð Þ ¼ lL, which has
the smallest root of l ¼ 4:493=L and leads to the familiar critical
buckling load of Pcritical ¼ 20:19EI=L2 (equivalent to K ffi 0:7 for

Pcritical ¼ p2EI=ðKLÞ2).



Table 3
Axial load capacity calculated for the tested specimen using the Analytical Approach
(Eq. (41)) compared with finite element analysis [21,22] and test [16] results for
different cases (force unit: kN).

Calculation
method

Analytical Eq. (41) Finite
element
analysis

Test
results

End conditions Fixed–fixed Fixed-pinned Fixed-
pinned

Fixed-
semi
fixed

No. of concrete
layers

n = 2 n = 3 n = 2 n = 3 – –

Exposure
time
(min.)

50 638.1 623.9 538.5 526.9 582.1 –
65 374.2 376.9 306.6 304.4 307.1 311.5
80 240.3 238.5 196.2 194.5 218.1 –
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Setting L ¼ 2692 mm and L1 ¼ 406:4 mm, Eq. (56) was numeri-
cally solved to obtain the smallest root of l ffi 0:05. The corre-
sponding critical buckling load is Pcritical ¼ 2:5� 10�3EI. For
L ¼ 2692 mm, this is equivalent to taking K ¼ 0:593 in the formula

Pcritical ¼ p2EI=ðKLÞ2.
To determine the axial load capacity of the specimen, Paxial and

Pcritical (defined in Eqs. (37) and (38)) were calculated for different
strain values and plotted in Fig. 10 for the four cases considered
(fixed–fixed and fixed-pinned, each with 2 and 3 concrete layers)
after 65 min. of exposure to the ASTM E119 fire. Note that the plots
were derived from the results of the MATLAB code written for the
procedure that used the varying tangent moduli of steel and con-
crete (Eqs. (39) and (40)) for the calculation of Pcritical at different
strain values.

Fig. 10 shows that the case with three concrete layers gives the
same results as using two concrete layers (the results have con-
verged with respect to the number of concrete layers for the speci-
fic problem in hand). The axial load capacity values calculated by
solving Eq. (41) for different cases (namely, the specimen subjected
to the first 50, 65 and 80 min of the standard ASTM E119 fire curve)
are summarized in Table 3. Note that for 65 min of fire exposure,
the cases with fixed–fixed and fixed-pinned end conditions have
axial load capacity of 375.4 kN (84.1 kips) and 304.3 kN (68.4 kips),
respectively. Considering that the column buckled under a load of
311.4 kN (70 kips) during the fire test, it was inferred that the end
conditions were closer to the fixed-pinned case rather than the
fixed–fixed one.
0

500

1000

1500

2000

2500

0 0.005 0.01 0.015 0.02 0.025

A
xi

al
 F

or
ce

 (k
N

)

Strain

Incremental Axial Loading of Specimen S3 - 65 min. 
of fire Exposure - Fixed-Fixed Condition

Paxial (Eq. (37)), n=2
Pcritical (Eq. (38)), n=2
Paxial (Eq. (37)), n=3
Pcritical (Eq. (38)), n=3

0

500

1000

1500

2000

2500

0 0.005 0.01 0.015 0.02 0.025

A
xi

al
 F

or
ce

 (k
N

)

Strain

Incremental Axial Loading of Specimen S3 - 65 min. 
of fire Exposure - Fixed-Pinned Condition

Paxial (Eq. (37)), n=2
Pcritical (Eq. (38)), n=2
Paxial (Eq. (37)), n=3
Pcritical (Eq. (38)), n=3

(a)

(b)

Fig. 10. Paxial and Pcritical functions plotted for Specimen S3 after 65 min of exposure
to the ASTM E119 standard fire curve assuming: (a) fixed–fixed and (b) fixed-
pinned end conditions for cases with different number of defined concrete layers
(n ¼ 2 and n ¼ 3).
Results for the 50, 65 and 80 min of fire exposure time were also
verified with the buckling forces calculated for the specimen in
using finite element analysis with ABAQUS in a separate study by
Imani et al. [21]. From the results presented in Table 3, it is inferred
that the results from applying the analytical approach to the case
with the fixed-pinned end conditions are again reasonably close
to the finite element analysis results, which were built with the
assumption of fixed-pinned end conditions, and slightly conserva-
tive due to the assumptions made in the heat transfer part of the
solution. Marginal differences between the results from the n ¼ 2
and n ¼ 3 cases confirm the convergence of the solution. Note that
even though the n ¼ 2 case coincidentally provided a closer esti-
mate of the experimental value in this specific problem, the gen-
eral solution strategy is to increase the number of levels as
needed to achieve convergence.

As the last part of the verifications process, the simplified step
by step approach described in Section 4.2 was applied to the spec-
imen to calculate the axial load capacity after 65 min of exposure
to the standard ASTM E119 fire curve. Since the first step of the
process (the heat transfer solution) was already completed in the
previous verification analysis (Section 3.3), the procedure started
with the second step, which requires the calculation of the strain
limits e1; e2; e3; e4 (if applicable) using Eq. (48). Using the informa-
tion provided in Table 2, after 65 min of fire exposure time, the
mentioned strain limits are calculated as:

e1¼epost Tost@ 65min:ð Þ¼ f post Tost@ 65min:ð Þ
Esost ðTost@ 65min:Þ¼

2:01
2581

¼7:79�10�4

e2¼epist Tist@ 65min:ð Þ¼ f pist Tist@ 65min:ð Þ
Esist ðTist@ 65min:Þ¼

9:97
10684

¼9:33�10�4

e3¼min 0:02;mini¼1�n ecui ðTcri @ 65min:Þ
 � �¼min 0:02;0:025f g¼0:02

e4¼mini¼1�n ecui ðTcri @ 65min:Þ
 �¼0:025

ð57Þ
The next step is dedicated to the calculation of the P�

criticali
’s for

i ¼ 1to4 using Eq. (47). These are the critical buckling loads at dif-
ferent strain levels, which are calculated using the tangent moduli
of steel and concrete sections as explained in Section 4.2. The load
values were calculated for the specimen after 65 min of exposure
to the ASTM E119 fire and are reported in Table 4.

Using the load values summarized in Table 4, the axial load
capacity of the column can be determined for different end condi-
tions according to the iterative method described in step 4 of the
simplified procedure proposed in Section 4.2. Axial load capacity
for the case with fixed-pinned end conditions and two concrete
layers can be calculated as (using Eq. (46) for calculation of P�

axiali
’s):



Table 4
P�

critical loads calculated at different strain levels for the tested specimen after 65 min of exposure to the ASTM E119 fire (n: No. of concrete layers).
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Fig. 11. Results from fire testing of Specimen C2-C4-SCC2: (a) temperature
distribution inside the column, test results from Lu et al. [15,16] compared with
analytical solution (Eq. (23)); (b) time history of axial deformation [15,16].
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P�
axial0

¼ 0

i ¼ 1 : P�
axial1

¼ 21:8kips < P�
critical2

¼ 192:4 kips ! i ¼ iþ 1 ¼ 2

i ¼ 2 : P�
axial2

¼ 25:0kips < P�
critical4

¼ 87:9 kips ! i ¼ iþ 1 ¼ 3

i ¼ 3 : P�
axial3

¼ 118:1kips > P�
critical5

¼ 28:7 kips :

P�
axial capacity ¼

P�
critical4

P�
axial3

� P�
critical5

P�
axial2

P�
axial3

� P�
axial2

� �
� P�

critical5
� P�

critical4

� �
¼ 87:9ð Þ 118:1ð Þ � 28:7ð Þ 25:0ð Þ

118:1� 25:0ð Þ � 28:7� 87:9ð Þ ¼
10380:9
152:3

¼ 68:2 kips

ð58Þ
Note that the calculated capacity (303.4 kN/68.2 kips) is reason-

ably close to the load values calculated from the analytical solution
(following the procedure of Section 4.1) and finite element analysis
for the case with fixed-pinned end conditions, which were
306.5 kN and 306.9 kN from Table 3 (68.9, 69.0 kips), respectively.
Recall that the specimen, after 65 min of exposure to the ASTM
E119 fire curve (the same fire loading condition as the one consid-
ered for the calculations above), failed under an axial load of
311.4 kN (70 kips).

To further investigate the accuracy of the simplified solution,
experimental results from Lu et al. [14,15] were also considered
in investigating behavior of CFDST stub columns subjected to stan-
dard fire. The specimen, referred to as ‘‘C2-C4-SCC2” in the original
paper, was built of outer and inner steel tubes with diameters of
219.1 mm and 165.1 mm, respectively. Wall thickness values were
reported as 5 mm for the outer tube and 3.2 mm for the inner tube.
Fig. 11a (with solid lines) shows time-history of temperature for
three points located on the inner surface of the outer tube, at
mid-width of the concrete, and on the outer surface of the inner
tube, based on test results presented in the study by Lu et al.
[14,15]. The temperature curve recorded for the outer tube was
approximated with a piece-wise linear function and used in the
simplified heat transfer solution described above for calculation
of the temperature field through the thickness of column. Results
at points of interest are plotted in Fig. 11a using dashed lines
and show good agreement with the experimental data.

Heat transfer results from the simplified solution (shown in
Fig. 11a) along with reported yield and maximum compressive
strength values of 426 MPa and 63.4 Mpa for steel tubes and infill
concrete were used in the procedure presented in Section 4.2 to
calculate the axial resistance of specimen during fire. Fig. 11b
shows time history of axial displacement recorded for the speci-
men during the test. The specimen was tested under a constant
axial load of 1802 kN with fixed-pinned boundary conditions and
failed due to global buckling (shown with extensive axial deforma-
tion in Fig. 11b) after about 25–30 min of exposure to fire [14,15].
Results from simplified calculations showed an axial load resis-
tance of about 1650 kN for a 30 min fire exposure, which is slightly
less than the test load. The difference can be due to conservative
prediction of temperature values as seen in Fig. 11a.

The analytical approaches described in this study for calculation
of the axial load capacity of CFDST columns subjected to fire were
shown to be sufficiently accurate when compared with results
from finite element analyses and test data. Although the more
sophisticated procedure described in Section 4.1 can provide rela-
tively more accurate results if implemented in a short computer
code, the simplified step by step process (presented in
Section 4.2) was shown to be capable of providing reasonable axial
capacity estimations for design purposes.

It is important to note that the proposed procedure for estima-
tion of axial load capacity of CFDST columns is only verified here
against one experiment and requires more extensive validation.
Considering the significant assumptions used in the presented
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simplified analytical approach (i.e. uniform distribution of strain in
the total cross-section, full composite action between the steel and
concrete regions, negligible differential expansions, and Euler–
Bernouli beam behavior), and the fact that each of these assump-
tions are possibly contentious, it can be arguably surprising that
accurate results were obtained from the simplified method. The
reasons for such good agreement are not fully known, and future
research may eventually establish why satisfactory results are
nonetheless obtained. However, it may be that the equations pro-
vide acceptable estimates of the axial load capacity during fire due
to the specific boundaries of the column considered here. The
CFDST column used in this study (and also the study by Lu et al.
[14,15]) was capped with steel plates at its top and bottom ends.
Capped ends limit the relative movements at the steel–concrete
interfaces and may contribute to develop enough composite action
between the steel and concrete region. Proposed the proposed
equations might not provide conservative results if: the column
ends are not capped and relative movement at the interface is
more significant (such as in long columns that can go through sig-
nificant expansion); or for tubes with large D=t ratios that might
lose a considerable amount of their flexural resistance (MP) due
to local buckling.

Another possible explanation is that, after significant fire expo-
sure, little global buckling resistance is provided by the outside
tube; however, since the inside tube remains in contact with the
concrete (as steel laterally expands more than concrete), most of
the initial assumptions remain applicable. Finally, given that the
concrete has lost 85% of its strength (and its tangent modulus
has reduced to almost zero) by the time global buckling develops,
for the verification case considered, the inside tube has a tangent
modulus of about 10,684 ksi (71,595 MPa), indicating that the
inside tube alone provides most of the flexural strength developed
during buckling. This proportion may change when a thicker con-
crete layer exists between the tubes, which may affect the accuracy
of the approximate methods. This remains to be elucidated in
future research.
5. Design recommendations for fire resistance of CFDST
columns subjected to fire

This section presents general design recommendations to
achieve a desired amount of fire resisting time for CFDST columns
under axial load. The recommendations are targeted to achieve
three levels of fire resistance (under standard ASTM E119 fire),
namely 1, 2 and 3 h limits, which each can be sufficient depending
on specific applications. The design recommendations are pre-
sented separately for the outer tube, concrete core, and inner tube,
using the analytical methods described above for both the heat
transfer and axial load capacity calculations as needed.
5.1. Inner steel tube

According to the Eurocode specifications for the structural
properties of steel at high temperatures (Fig. 5), the temperature
of 300 �C can be selected as a critical limit, as the material experi-
ences a decrease of 20% in its elastic modulus and will continue to
do so at a significantly higher rate when reaching slightly higher
temperatures. Note that the 300 �C limit is also just below the tem-
perature limit for the start of significant reductions in the yield
stress of steel (400 �C). In a CFDST column, the inner tube can be
thermally protected by the concrete layer to remain below the crit-
ical temperature limit for a desired amount of fire exposure time.

Assuming that the minimum required thickness of concrete
layer is provided to keep the temperature of the inner tube below
the critical limit for the desired amount of fire exposure time
(discussed later in Section 5.2), the diameter and thickness of the
inner tube can be selected such that (apart from contributing to
the pre-fire seismic and service load resistance in other limit
states) it can sustain the permanent gravity loads that remain act-
ing on the structure in a post-fire scenario, for the desired fire
exposure time. Note that the D=t ratio of the inner tube must be
checked to comply with the desired compactness and ductility
levels imposed by other limits states (e.g., required by seismic
design).
5.2. Concrete core

Concrete has a relatively low heat conductance rate and can act
as a fire protection layer for the inner steel tube. Considering the
300 �C limit as the critical temperature for the inner tube, the
thickness of the concrete between the inner and outer tube can
be chosen such as to delay the inner tube attainment of the critical
limit for the desired amount of fire resistance time.

Using the analytical solution presented in Section 3 for the heat
transfer problem (specifically Eq. (23)), it is possible to calculate
the minimum concrete thickness values required to keep the tem-
perature of inner tubes with diameter sizes ranging from 50.8 mm
to 762 mm below the critical limit (i.e., 300 �C) for 1, 2 and 3 h of
exposure of the corresponding CFDST column to the standard
ASTM E119 fire. Fig. 12a shows the results of these analyses for dif-
ferent fire exposure times. Note that as the inner tube diameter
increases, the minimum required concrete layer thickness values
converge to a constant limit. This might be explained by looking
into a relatively simpler situation where the inner and outer sur-
faces of a cylinder, with radii of r1 and r2, have constant (steady
state) temperature values of T1 and T2. In this situation, tempera-
ture of a point at the distance of r from the center ðr1 6 r 6 r2Þ is
proportional to the value lnðr=r1Þ [25]. Assuming r1 as the radius
of the inner tube (equal to the inner radius of the concrete layer),
and r � r1 as the thickness of the concrete layer, variation of tem-
perature through the thickness of the concrete layer will be pro-
portional to lnðr=r1Þ. Fig. 12b shows the variation of lnðr=r1Þ for
different values of inner tube diameter in the range of 50.8 mm
to 762 mm ð25:4 mm 6 r1 6 381 mmÞ and different concrete layer
thickness ðr � r1Þ values in the range of 50.8 mm to 152.4 mm. The
figure shows that the rate of change in lnðr=r1Þ values decrease as
r1 increases.

Using the plots shown in Fig. 12a, simple equations were
defined for the calculation of the minimum required concrete layer
thickness as a function of inner tube diameter for different amount
of fire exposure time. For a 1-h exposure:

tconc:min: ¼ 25:4 4:90� 0:20distð Þ; 50:8 6 dist 6 203:2
16:2; dist > 203:2



ð59Þ

for a 2-h exposure:

tconc:min: ¼ 25:4ð7:40� 0:25distÞ; 50:8 6 dist 6 254
124:5; dist > 254



ð60Þ

and for a 3-h exposure:

tconc:min: ¼ 25:4ð9:30� 0:20distÞ; 50:8 6 dist 6 254
160:0; dist > 254



ð61Þ

where tconc:min: is the minimum required concrete layer thickness and
dist is the diameter of the inner tube in milimeters. The curves
resulting from Eqs. (59)–(61) are plotted with dashed lines on top
of the existing curves in Fig. 12a.
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Fig. 12. Applying the analytical heat transfer solution to CFDST columns with
different inner tube radius values: (a) minimum concrete thickness required to
keep the temperature of inner tube below the critical limit (i.e., 300 C) for 1, 2 and
3 h of exposure to the standard ASTM E119 fire; (b) variation of lnð r
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values of r1 and r � r1 (r1: inner tube radius, r � r1: concrete layer thickness).

Table 5
Geometric properties of the selected profiles for the outer steel tube.

Code Profile Outer
diameter
(mm)

Thickness
(mm)

D/t Compactness and
ductility level

AA HSS16x0.375 406.4 8.9 45.84 Compact and
highly ductile

AB HSS16x0.438 406.4 10.3 39.31 Compact and
highly ductile

AC HSS16x0.500 406.4 11.8 34.41 Compact and
highly ductile

AD HSS16x0.625 406.4 14.8 27.54 Compact and
highly ductile

B HSS18x0.500 457.2 11.8 38.71 Compact and
highly ductile

C HSS20x0.500 508.0 11.8 43.01 Compact and
highly ductile
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5.3. Outer steel tube

The outer tube of a CFDST column subjected to fire reaches the
critical temperature level in a relatively short time due to its direct
exposure to fire. Note that in the standard ASTM E119 fire curve,
the air temperature reaches 300 �C in less than 10 min.
Therefore, the outer steel tube will go through significant elastic
modulus and yield strength reductions in the early minutes of its
fire exposure.
Table 6
CFDST design cases with their calculated axial load capacity.

Case ID. Outer tube section Inner tube section Conc. layer thi

1.AA HSS16.000x0.375 HSS9.625x0.500 72.1
1.AB HSS16.000x0.438 HSS9.625x0.500 70.6
1.AC HSS16.000x0.500 HSS9.625x0.500 69.1
1.AD.1 HSS16.000x0.625 HSS9.625x0.250 66.3
1.AD.2 HSS16.000x0.625 HSS9.625x0.312 66.3
1.AD.3 HSS16.000x0.625 HSS9.625x0.375 66.3
1.AD.4 HSS16.000x0.625 HSS9.625x0.500 66.3
1.B HSS18.000x0.500 HSS10.750x0.500 80.3
1.C HSS20.000x0.500 HSS12.750x0.500 80.3

2.AD HSS16.000x0.625 HSS2.875x0.250 151.9
2.B HSS18.000x0.500 HSS7.625x0.375 119.9
2.C HSS20.000x0.500 HSS10.000x0.625 115.3

3.AD HSS16.000x0.625 HSS1.660x0.140 167.4
3.B HSS18.000x0.500 HSS1.660x0.140 195.8
3.C HSS20.000x0.500 HSS3.500x0.313 197.9
Considering the situation described above and the fact that the
relatively high thermal conductance rate of steel would cause the
heat to almost immediately transfer through the thickness of the
outer tube, it is inferred that the outer tube has a marginal contri-
bution to the fire resistance of the CFDST columns. Therefore, it is
recommended that the minimum required thickness of the outer
tube be selected based on the seismic and service load require-
ments (ignoring the fire performance criteria). For instance, assum-
ing an outer diameter of 381–508 mm for a column used in a
typical multistory building, the minimum thickness of the outer
tube ðf y ¼ 345 MPa

50 ksiÞ would need to be 7.4–9.9 mm to satisfy
both the compactness and moderate ductility requirements per
the AISC seismic specifications [26,27]. Note that the above
requirements are for cases where no fire-proofing material is
applied to the outer steel, consistently with what has been consid-
ered throughout this study.

5.4. Examples: investigating the effect of different section geometry
parameters on the axial load capacity of CFDST columns subjected to
fire

Different trial cases with outer tube diameters in the range of
381–508 mm (practical sizes for multi-story building columns)
were considered to calculate their axial load capacities when sub-
jected to the first 1, 2, and 3 h of the standard ASTM E119 fire. Note
that the goal of these examples was not to design a CFDST column
for a specific fire performance, but rather to provide a general
sense of the axial load capacity of CFDST columns subjected to
the standard ASTM E119 fire and study the effects of geometric
properties of the section, while the outer diameter size was limited
to the range of 381–508 mm and the other remaining parameters
ckness (mm) Fire exposure time (hour) Axial load capacity (kN)

1 1742
1 1754
1 1765
1 1213
1 1294
1 1432
1 1788
1 2569
1 3491

2 833
2 1524
2 2628

3 332
3 769
3 1581
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Fig. 13. Effects of the section geometry on the behavior of CFDST columns subjected
to the ASTM E119 fire: (a) inner tube temperature for varying concrete thickness;
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(i.e., outer tube thickness, concrete layer thickness, and inner tube
thickness) were changing.

In the calculations presented here, the outer steel tube is
assumed to exactly follow the standard time–temperature curve
throughout the fire exposure time. Therefore, the results from these
calculation are relatively conservative, because the standard fire
curve is defined for the air temperature and the temperature on
the surface of the outer steel tube is slightly lower (as seen, for
example, in the fire tests results reported in Section 3.3).

Both the outer and inner steel tubes were assumed to have elas-
tic modulus and yield strength values of 29,000 ksi (200,000 MPa)
and 42 ksi (290 MPa), respectively. These are nominal values for
HSS round sections. A maximum compressive strength of 5 ksi
(MPa) was assumed for the concrete. Table 5 shows the geometric
properties of the different round HSS section selected for the outer
steel tubes.

To study the effect of concrete thickness, different cases, rang-
ing from a minimum thickness of 50.8 mm up to a maximum of
177.8 mm, were checked for all of the outer tube sections specified
in Table 5 using Eq. (23), with the goal of keeping the inner tube
temperature below the critical limit (300 �C) at the end of the 1,
2 and 3-h fire exposures. Fig. 13a shows the results of the inner
tube temperatures calculated for a CFDST column with the outer
tube section AA (from Table 5) for different values of concrete
thicknesses (ranging from 50.8 to 177.8 mm), after 1, 2 and 3 h
of exposure to the ASTM E119 fire curve.

Looking into Fig. 13a, there are two cases for the 1-h fire
exposure time in which the inner tube temperature was kept
below the critical limit. These cases have concrete thickness val-
ues of 101.6 mm and 127.0 mm for inner tubes with outer diam-
eters of 203.2 mm and 152.4 mm, respectively. Note that both of
the mentioned concrete layer thickness values are above the
minimum required value calculated using Eq. (59) for inner tube
with the mentioned diameter sizes (the calculated minimum
thickness values were equal to 83.8 and 94.0 mm). Fig. 13a also
shows that a CFDST column with the outer tube diameter of
406.4, regardless of the geometric properties of the inner tube
and concrete layer, will not be able to keep the temperature of
its inner tube below the critical limit for a 3-h period. This is
because selection of an inner tube with the smallest available
diameter size ðdist ¼ 42:2mmÞ results in the thickness value of
173.2 mm for the concrete layer, which is not sufficient.

Using the outer tube sections shown in Table 5 total of 15 CFDST
column cross-sections were defined to be used in the axial load
capacity calculation for different fire exposure times. Table 6 shows
all of the selected cases with their axial load capacity values calcu-
lated using the simplified analytical step by step method described
in Section 4.2. All of the columns are assumed to have a length of
4064 mm (typical story height) and pinned–pinned boundary con-
ditions. The inner tube sectionswere selected such as to create cases
with different concrete layer thickness and inner tube thickness val-
ues. Note that design cases 1.AD.1 to 1.AD. 4 are selected to assess
the effects of changes in the inner tube thickness on the axial load
capacity of the column when all of the other geometric parameters
are kept constant. Also cases 1.AA, 1.AB, 1.AC and1.AD.4 are selected
to perform a similar analysis on the outer tube thickness (withmar-
ginal changes in the concrete layer thickness). For cases in which
only one thickness is chosen for the inner or outer tube, it was taken
to be equal to the maximum available thickness (based on shapes
listed in the AISC Steel Construction Manual).

Fig. 13b shows the effect of changes in the thickness of outer
and inner tubes on the axial load capacity of CFDST columns sub-
jected to the first hour of the standard ASTM E119 fire. Note that
the changes are made to a base model with an axial load capacity
of about 1779 kN (400 kips), for which all other geometric
parameters are kept constant. The figure shows that changes in
the outer tube thickness do not significantly affect the axial load
capacity of the column. On the other hand, increasing the thickness
of the inner tube has increased the axial load capacity by as much
as 32% in the cases considered. The difference is due to the fact that
the inner tube temperature remains significantly lower than that
of the outer tube and increasing the thickness of the former leads
to a significant increase in the column’s axial load capacity.
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Fig. 13c shows the effects of changes in the outer tube diameter
on the axial load capacity of CFDST columns, assuming that all of
the other section geometric properties are selected such as to max-
imize the axial resistance after the start of fire. The axial load
capacity increases for larger outer tube diameters in a similar trend
for all of the three fire duration choices. The results were expected,
since increasing the diameter of the outer tube allows for the selec-
tion of larger concrete layer thickness, which can generally
enhance the column’s performance under fire.

6. Conclusions

An analytical procedure was developed for the calculation of the
axial load capacity of CFDST columns subjected to fire. The proce-
dure started with a solution for the heat transfer problem, derived
analytically by solving the partial differential equation of heat con-
duction. The solution was simplified to an explicit formula that
can provide the temperature of any point in the CFDST column’s
cross-section, after a given amount of exposure time to any prede-
fined time–temperature curve. The simplification process had a
marginal conservative effect on the accuracy of the calculation that
resulted in slightly higher temperature values as a consequence of
replacing a few temperature dependent factorswith constant values
recommended in the Eurocode 4. Comparingwith experimental and
finite element results, the temperature values calculated using the
simplifiedanalytical formulawere showntobe sufficiently accurate.

The second part of the analytical procedure consisted of a sim-
plified step by step method to estimate the axial load capacity of
CFDST columns subjected to fire using the temperature modified
material properties calculated in the previous part. The method
is based on solving for axial equilibrium using simple expressions
for the structural material properties at elevated temperatures.
Calculated results were in good agreement with the finite element
and experimental results for a previously tested specimen.

The analytical procedure defined for the axial load capacity cal-
culation was applied to a few case studies to propose some general
design recommendations for axially loaded CFDST columns sub-
jected to fire. It was suggested that to retain a given axial load for
a certain amount of time, the most effective solution is to design
an inner tube capable of sustaining that load andmake the concrete
layer thick enough to keep the inner tube’s temperature below the
critical limit (about 300 �C) for the specified amount of fire resis-
tance time.

Moreover, it was found that for a given CFDST column cross-
section (i.e., knowndiameters of the inner and outer tubes), changes
in the thickness of the outer tube do not significantly affect the col-
umn’s axial load capacity after a certain amount of exposure to fire.
Changing the thickness of the inner tube, on the other hand, can be
significantly effective, because, being at much lower temperatures
than the outer tube, its capacity is retained for a longer time.
Additional calculations confirmed the intuitive expectation that
increasing the diameter of the outer tube, or any other change that
results in a thicker concrete layer, generally increases the axial load
capacity of CFDST columns subjected to fire.

Appendix A. Solution to the heat transfer equation for a circular
section subjected to the fire curve, f(t), around the outer edge
and simplification for a bilinear f ðtÞ

This appendix presents the solution for the differential equation
given in Eq. (14) of the main text. The solution is as follows:

a2 v ;rr þ 1
r
v ;r

� �
¼ v ;t þ f 0ðtÞ 0 ¼ ri 6 r 6 ro; 0 6 t < 1

v r;0ð Þ ¼ 0; v ro; tð Þ ¼ 0
ð14Þ
Note that the new problem has a homogeneous boundary con-
dition, but the differential equation itself has changed to a non-
homogeneous one because of the addition of the term, f 0ðtÞ.
Assuming the function, v, as a summation of its homogeneous
and particular parts v ¼ vh þ vp

� �
, and using the method of

Separation of Variables, the homogeneous part of the solution for
the differential equation can be written solved for as follows:

vhðr; tÞ ¼ R rð ÞTðtÞ ðA:1Þ

R;rr þ 1
r R;r

R
¼ 1
a2

T ;t

T
¼ constant ¼ �j2 ðA:2Þ

R;rr þ 1
r
R;r þ j2R ¼ 0 ðA:3Þ

T ;t þ j2a2T ¼ 0 ðA:4Þ

R rð Þ ¼ C1J0 jrð Þ þ C2Y0ðjrÞ; j– 0
C3 þ C4lnðrÞ; j ¼ 0



ðA:5Þ

TðtÞ ¼ C5e�j
2a2t ; j – 0

C6; j ¼ 0

(
ðA:6Þ

vhðr; tÞ ¼ C3 þ C4 ln rð Þ½ �C6 þ C1J0 jrð Þ þ C2Y0 jrð Þ½ �C5e�j
2a2t

¼ C 0
1 þ C 0

2 ln rð Þ þ ½C 0
3J0 jrð Þ þ C 0

4Y0 jrð Þ�e�j2a2t ðA:7Þ
Note that, aside from the boundary condition given in the Eq.

(14), it is appropriate to require that vh must be bounded at
r ¼ 0. This is a reasonable requirement, since the temperature at
ri starts from the room condition and will increase to some extent
according to the given fire curve. Considering the nature of the fire
curves, the final temperature value at r ¼ 0 will eventually reach a
limit (which will be less than the maximum outer tube tempera-
ture). Applying this limit condition (as a boundary) at r ¼ 0
requires that:

vh 0; tð Þ ¼ C 0
1 þ C 0

2 ln rð Þ þ ½C 0
3J0 jrð Þ þ C 0

4Y0 jrð Þ�e�j2a2t

! bounded ðA:8Þ
Since both lnðrÞ and Y0ðjrÞ are unbounded at r ¼ 0, in order to

satisfy Eq. (A.8), the constants C0
2 and C0

4 must be equal to zero. Eq.
(A.7) simplifies to:

vhðr; tÞ ¼ C 0
1 þ C 0

3J0 jrð Þe�j2a2t ðA:9Þ
Applying the other boundary condition, vh ro; tð Þ ¼ 0, to Eq. (A.9)

gives:

vh ro; tð Þ ¼ C 0
1 þ C 0

3J0 jroð Þe�j2a2t ¼ 0 for 0 6 t < 1 ðA:10Þ
Since C0

1 (as a constant) and C0
3J0 jroð Þe�j2a2t are linearly inde-

pendent in the t interval, it follows from Eq. (A.10) that C0
1 ¼ 0

and C0
3J0 jroð Þ ¼ 0. The latter gives C0

3 ¼ 0 or J0 jroð Þ ¼ 0. Since the

elimination of the C0
3J0 jroð Þe�j2a2t term would lead to a trivial solu-

tion, it is inferred that:

J0 jroð Þ ¼ 0 ðA:11Þ
The solution for Eq. (A.11) consists of positive roots of the J0

function that are referred to as zn ¼ jnro (these roots are known
and will be used later). Using superposition and substituting C
for C0

3 for simplicity, the homogenous part of the solution for the
differential equation becomes:

vh ¼
X1
n¼1

CnJ0 zn
r
ro

� �
e�ðznaro

Þ2t ðA:12Þ



174 R. Imani et al. / Engineering Structures 102 (2015) 156–175
where the Cn’s are constants. Now the particular solution, vp, needs
to be added to vh. Taking vp as:

vp ¼
X1
n¼1

DnðtÞJ0 zn
r
ro

� �
e�ðznaro

Þ2t ðA:13Þ

where DnðtÞ is a function of only tand Substituting it into Eq. (14)
gives:

a2 vprr þ
1
r
vpr

� �
¼ vpt þ f 0ðtÞ ðA:14Þ

X1
n¼1

D0
nðtÞJ0 zn

r
ro

� �
e�ðznaro

Þ2t ¼ �f 0ðtÞ ðA:15Þ

which is in the Bessel-Fourier series form. Multiplying both sides of
Eq. (A.16) by the term r

ro
J0ðzm r

ro
Þ and integrating in the domain

0 ¼ ri < r < ro gives:Z r0

0

r
ro
J0 zm

r
ro

� �X1
n¼1

D0
nðtÞJ0 zn

r
ro

� �
e�

zna
roð Þ2tdr

¼
Z ro

0
ð�f 0ðtÞÞ r

ro
J0 zm

r
ro

� �
dr ðA:16Þ

Using the orthogonallity of Bessel functions, Eq. (A.16) is simpli-
fied to:Z r0

0

r
ro
D0

nðtÞJ20 zn
r
ro

� �
e�

zna
roð Þ2tdr¼

Z ro

0
ð�f 0ðtÞÞ r

ro
J0 zn

r
ro

� �
dr ðA:17Þ

Using:Z
sJ0 sð Þds ¼ sJ1 sð Þ þ C ðA:18Þ

Z a

0
s J2vðznsÞ
h i

ds ¼ a2

2
J2vþ1ðznaÞ
h i

ðA:19Þ

On Eq. (A.17) gives:

D0
nðtÞ ¼

2ð�f 0ðtÞÞ
znJ1ðznÞ

eð
zna
ro

Þ2t ðA:20Þ

DnðtÞ ¼
Z t

0
D0

nðsÞds ¼
Z t

0

2ð�f 0ðsÞÞ
znJ1ðznÞ

eð
zna
ro

Þ2sds ðA:21Þ

in which f 0ðtÞ is the derivative of the predetermined time–temper-
ature (fire) curve, which is applied to the outer edge of the section.
Now summing up the homogeneous and particular solutions
(v ¼ vh þ vp) gives:

v ¼ vh þ vp ¼
X1
n¼1

½Cn þ DnðtÞ�J0 zn
r
ro

� �
e�ðznaro

Þ2t

¼
X1
n¼1

Cn þ
Z t

0

2ð�f 0ðsÞÞ
znJ1ðznÞ

eð
zna
ro

Þ2sds
� �

J0 zn
r
ro

� �
e�ðznaro

Þ2t ðA:22Þ

Satisfying the initial boundary condition ðv r;0ð Þ ¼ 0Þ gives:

vðr;0Þ ¼
X1
n¼1

½Cn þ Dnð0Þ�J0 zn
r
ro

� �
e�ðznaro

Þ2ð0Þ

¼
X1
n¼1

Cn þ
Z 0

0

2ð�f 0ðsÞÞ
znJ1ðznÞ

eð
zna
ro

Þ2sds
� �

J0 zn
r
ro

� �

¼
X1
n¼1

CnJ0 zn
r
ro

� �
¼ 0 ðA:23Þ

from which it is inferred that Cn ¼ 0 (since J0ðzn r
ro
Þ– 0). Finally, the

solution for the temperature field in the circular section, uðr; tÞ, can
be written as:
uðr; tÞ ¼ vðr; tÞ þ u0ðr; tÞ

uðr; tÞ ¼
X1
n¼1

Z t

0

2 �f 0ðsÞ� �
znJ1 znð Þ eð

zna
ro

Þ2sds
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I�

J0 zn
r
ro

� �
e�ðznaro

Þ2t

2
66664

3
77775þ f ðtÞ

ðA:24Þ
Assuming that the function, f ðtÞ, is bilinear, the integral term in

Eq. (A.22) can be computed as:Z t

0

2 �f 0ðsÞ� �
znJ1 znð Þ eð

zna
ro

Þsds

¼ �2
znJ1 znð Þ

a1
R t
0 e

ðznaro
Þ2sds

h i
; t 6 t1

a1
R t1
0 eð

zna
ro

Þ2sdsþ a2
R t2
t1
eð

zna
ro

Þ2sds
h i

; t > t1

8><
>:

ðA:25Þ

After computing the integral terms, Eq. (A.23) can be written as:Z t

0

2 �f 0ðsÞ� �
znJ1 znð Þ eð

zna
ro

Þsds

¼ �2r2o
a2z3nJ1 znð Þ

a1 eð
zna
ro

Þ2t � 1
h i

; t 6 t1

a1 eð
zna
ro

Þ2t1 � 1
h i

þ a2 eð
zna
ro

Þ2t � eð
zna
ro

Þ2t1
h i

; t > t1

8><
>:

ðA:26Þ
according to which, the function AnðtÞ can be defined as:

AnðtÞ ¼
a1 eð

zna
ro

Þ2t � 1
h i

; t 6 t1

a1 eð
zna
ro

Þ2t1 � 1
h i

þ a2 eð
zna
ro

Þ2t � eð
zna
ro

Þ2t1
h i

; t > t1

8><
>: ðA:27Þ

Note that, only the first four terms of AnðtÞ are needed (using the
constants z1 to z4) for a sufficiently accurate result. Therefore, solu-
tion of the differential equation for a bilinear f ðtÞ can be written as:

ubilinear fireðr; tÞ ¼
X4
n¼1

�2r2oAnðtÞ
a2z3nJ1 znð Þ J0 zn

r
ro

� �
e�ðznaro

Þ2t
" #

þ f ðtÞ ðA:28Þ

Using the numerical values of J1ðznÞ for the first four terms, the
approximate formula for the calculation of J0ðzÞ (Eq. (17)), the
resulting equation is:

ubilinear fireðr; tÞ ¼ r2o
a2 �0:2770A1ðtÞB1ðtÞ þ 0:0349A2ðtÞB2ðtÞ½
�0:0114A3ðtÞB3ðtÞ þ 0:0052A4ðtÞB4ðtÞ� þ f ðtÞðA:29Þ
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